ОГЭ, Математика. Геометрия: Задача №9460EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9460EF

Задача №225 из 1087
Условие задачи:

Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.

Решение задачи:

Рассмотрим треугольники ABC и BDE. Т.к. стороны правильного шестиугольника равны, то и CA=AB=BD=DE, /A=/D, т.к. углы правильного шестиугольника тоже равны. Следовательно, данные треугольники равны (по первому признаку равенства треугольников). Тогда BC=BE.
Углы /BCA=/CBA=/EBD=/BED (по свойству равнобедренного треугольника). Следовательно внутренние углы /С=/B=/E.
Данные выкладки справедливы для любой пары треугольников,следовательно все стороны внутреннего шестиугольника равны и все внутренние углы равны. Это означает, что внутренний шестиугольник - правильный (по определению).

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №465DF5

Найдите тангенс угла AOB.



Задача №3A1860

Площадь прямоугольного треугольника равна 9683. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №37F36A

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая поворачивается на 14°?



Задача №3B5D8B

На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.



Задача №09252F

Площадь прямоугольного треугольника равна 3383/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренного треугольника:
1) Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Иными словами - в равнобедренном треугольнике углы при основании равны.

2) Биссектрисы, медианы и высоты, проведённые из этих углов, равны.
3) Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика