Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-120°=60° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin60°=ED/CD (sin60°=√3/2 по
таблице)
√3/2=ED/40
ED=40√3/2
sin(∠ABF)=AF/AB (по
определению)
sin45°=ED/AB
AB=ED/sin45° (sin45°=√2/2 по
таблице)
Ответ: 20√6
Поделитесь решением
Присоединяйтесь к нам...
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:2, KM=23.
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
В трапеции ABCD AB=CD, ∠BDA=49° и ∠BDC=13°. Найдите угол ABD. Ответ дайте в градусах.
Найдите угол ABC. Ответ дайте в градусах.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
α | sinα | cosα | tgα | ctgα |
0° | 0 | 1 | 0 | --- |
30° | 1/2 | √ |
√ |
√ |
45° | √ |
√ |
1 | 1 |
60° | √ |
1/2 | √ |
√ |
90° | 1 | 0 | --- | 0 |
120° | √ |
-1/2 | -√ |
0 |
135° | √ |
-√ |
-1 | -1 |
150° | 1/2 | -√ |
-√ |
-√ |
180° | 0 | -1 | 0 | --- |
210° | -1/2 | -√ |
√ |
√ |
225° | -√ |
-√ |
1 | 1 |
240° | -√ |
-1/2 | √ |
√ |
270° | -1 | 0 | --- | 0 |
300° | -√ |
1/2 | -√ |
-√ |
315° | -√ |
√ |
-1 | -1 |
330° | -1/2 | √ |
-√ |
-√ |
360° | 1 | 0 | 0 | --- |
Комментарии:
(2023-01-22 19:06:55) адэлина: начерчите углы АВС-120 И ДВС-45 с общей стороны ВСтак, чтобы они лежали по одну сторону от нее