Синус острого угла A треугольника ABC равен √
Вариант №1
В условии задачи про треугольник ничего не сказано. Но мы можем нарисовать такой прямоугольный треугольник, чтобы и у него
синус острого угла был равен √
Чтобы sinA был равен √
По тоереме Пифагора:
AB2=CB2+AC2
52=(√
25=21+AC2
AC2=4
AC=2
Тогда, по определению
косинуса:
cosA=AC/AB=2/5=0,4
Ответ: 0,4
Вариант №2
Воспользуется
основной тригонометрической формулой:
sin2A+cos2A=1
(√
21/25+cos2A=1
cos2A=1-21/25=1-0,84=0,16
cosA=0,4
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BAC=20° (см. рисунок). Найдите величину угла BOC (в градусах).
В треугольнике ABC AB=BC=37, AC=24. Найдите длину медианы BM.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.
Площадь прямоугольного треугольника равна 50√
Комментарии: