Синус острого угла A треугольника ABC равен √
Вариант №1
В условии задачи про треугольник ничего не сказано. Но мы можем нарисовать такой прямоугольный треугольник, чтобы и у него
синус острого угла был равен √
Чтобы sinA был равен √
По тоереме Пифагора:
AB2=CB2+AC2
52=(√
25=21+AC2
AC2=4
AC=2
Тогда, по определению
косинуса:
cosA=AC/AB=2/5=0,4
Ответ: 0,4
Вариант №2
Воспользуется
основной тригонометрической формулой:
sin2A+cos2A=1
(√
21/25+cos2A=1
cos2A=1-21/25=1-0,84=0,16
cosA=0,4
Ответ: 0,4
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Точка О – центр окружности, /ACB=62° (см. рисунок). Найдите величину угла AOB (в градусах).
Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 31°. Найдите угол B этой трапеции. Ответ дайте в градусах.
В треугольнике АВС углы А и С равны 40° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
Комментарии: