В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.
Треугольник ABH
прямоугольный (т.к. AH -
высота).
Тогда cosB=BH/AB (по
определению).
AB=BC (по условию).
BC=BH+CH=48+2=50=AB
cosB=BH/AB=48/50=96/100=0,96
Ответ: 0,96
Поделитесь решением
Присоединяйтесь к нам...
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
Стороны AC, AB, BC треугольника ABC равны 3√
Площадь прямоугольного треугольника равна 968√
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=5, AC=45.
В треугольнике ABC AB=BC=53, AC=56. Найдите длину медианы BM.
Комментарии: