В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=64, HC=16 и ∠ACB=37°. Найдите угол AMB. Ответ дайте в градусах.
Так как BM -
медиана, значит AM=MC=AC/2=64/2=32
Рассмотрим треугольник MBC.
MH=MC-HC=32-16=16, т.е. получается, что MC=HC.
BH для этого треугольника получается не только
высота, но и
медиана. Это
свойство
равнобедренного треугольника.
По
свойству равнобедренного
треугольника: ∠BMC=∠ACB=37°.
∠AMB=180°-∠BMC=180°-37°=143° (т.к. он
смежный)
Ответ: 143
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 8, а расстояние от точки пересечения диагоналей ромба до неё равно 2. Найдите площадь этого ромба.
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
Сторона равностороннего треугольника равна 12√3. Найдите радиус окружности, описанной около этого треугольника.
Площадь прямоугольного треугольника равна 32√
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=20, BC=10. Найдите CM.
Комментарии: