ОГЭ, Математика. Геометрия: Задача №01353A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По теореме Пифагора:
AC2=CH2+AH2
652=(1321)2+AH2
4225=169*21+AH2
AH2=4225-3549
AH2=676
AH=26
sin∠ACH=AH/AC (по определению)
sin∠ACH=26/65=0,4
Как было выведено выше:
sin∠ABC=sin∠ACH=0,4
Ответ: sin∠ABC=0,4


Вариант №2 (предложил пользователь Валентина)
Рассмотрим треугольник ACH.
Так как CH - высота, то данный треугольник прямоугольный.
Следовательно, можно воспользоваться теоремой Пифагора:
AC2=AH2+CH2
652=AH2+(1321)2
4225=AH2+132*21
4225=AH2+3549
AH2=4225-3549=676
AH=26
По свойству прямоугольного треугольника (Пропорциональные отрезки):
AC2=AB*AH
652=AB*26
AB=4225/26=162,5
По определению синуса:
sin∠ABC=AC/AB=65/162,5=0,4
Ответ: 0,4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №02270F

Найдите площадь треугольника, изображённого на рисунке.



Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.



Задача №035C64

Центральный угол AOB опирается на хорду АВ так, что угол ОАВ равен 60°. Найдите длину хорды АВ, если радиус окружности равен 8.



Задача №EA06D1

В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 4.



Задача №8A7C04

Точка О – центр окружности, /BOC=100° (см. рисунок). Найдите величину угла BAC (в градусах).

Комментарии:


(2021-02-11 16:45:24) Игорь : В треугольнике ABC, AC=13 см и биссектриса угла A делит сторону BC на отрезки BM=3см, MC=5см. Определите сторону AB.
(2015-11-16 22:51:08) Администратор: Валентина, хороший вариант. Я решил его опубликовать, спасибо.
(2015-11-13 12:15:00) валентина: 1)AH^2=4225-3549=676;AH=26. 2)AC^2=AB*AH;AB=4225:26=162,5. 3)sinABC=65:162,5=0,4. Тема:Пропорциональные отрезки в прямоугольном треугольнике:2).

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Синус, косинус, тангенс и котангенс угла прямоугольного треугольника.

Синус равен отношению противолежащего катета к гипотенузе.
Sin α =
Косинус равен отношению прилежащего катета к гипотенузе.
Cos α =
Тангенс равен отношению противолежащего катета к прилежащему.
Tg α =
Котангенс равен отношению прилежащего катета к противолежащему.
Ctg α =
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика