Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
AD для треугольника ABM является и
медианой, и высотой. А это
свойство медианы для равнобедренного треугольника.
Следовательно, треугольник ABM -
равнобедренный с основанием BM.
По
определению равнобедренного треугольника AB=AM.
Т.к. BM - медиана для треугольника ABC, следовательно AM=MC (по
определению медианы).
Тогда AM=AC/2=5. Как мы выяснили ранее AM=AB => AB=5.
Ответ: 5
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
В треугольнике ABC с тупым углом ABC проведены высоты AA1 и CC1. Докажите, что треугольники A1BC1 и ABC подобны.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 92. Найдите стороны треугольника ABC.
В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.
Радиус вписанной в квадрат окружности равен 7√
Комментарии: