ОГЭ, Математика. Геометрия: Задача №221DAD | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №221DAD

Задача №793 из 1087
Условие задачи:

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.

Решение задачи:

По свойству касательной:
OF - радиус окружности, т.к. OF проходит через центр окружности и перпендикулярен касательной AC.
AG=AF
BG=BH=x
CH=CF=y
AF найдем по теореме Пифагора:
AO2=AF2+OF2
132=AF2+52
169=AF2+25
AF2=144
AF=12=AG
EH - высота параллелограмма. EH=OH+OE=5+9=14
SABC=p*r, где p - полупериметр, r - радиус вписанной окружности.
p=(AB+BC+AC)/2.
Рассмотрим треугольники ABC и CDA.
AD=BC и AB=CD (по свойству параллелограмма).
AC - общая сторона.
Следовательно, по третьему признаку равенства треугольников, данные треугольники равны.
Тогда: SABCD=2*SABC
И в тоже время SABCD=EH*AD.
Приравняем полученные равенства:
p*r=EH*AD/2
(AB+BC+AC)/2*r=EH*BC/2
(AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC)
(12+x+x+y+y+12)*5=14*(x+y)
(24+2x+2y)*5=14*(x+y)
120+5(2x+2y)=14*(x+y)
120+10(x+y)=14*(x+y)
120=4(x+y)
x+y=30=BC=AD
SABCD=EH*AD=14*30=420
Ответ: 420

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №0DA029

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:4:11. Найдите радиус окружности, если меньшая из сторон равна 14.



Задача №04A87F

Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.



Задача №C14C58

Найдите площадь квадрата, если его диагональ равна 1.



Задача №59B379

В трапеции АВСD боковые стороны AB и CD равны, СН — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 10, а меньшее основание BC равно 4.



Задача №53152C

В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.

Комментарии:


(2016-04-18 11:48:14) Администратор: Даниил, конечно это опечатка, спасибо огромное, что нашли. Исправлено!
(2016-04-17 23:14:25) Даниил: (AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC) (12+x+x+y+y+4)*5=14*(x+y) откуда 4=AF

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика