ОГЭ, Математика. Геометрия: Задача №0EC4A1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0EC4A1

Задача №759 из 1087
Условие задачи:

Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.

Решение задачи:

Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник прямоугольный, так как расстояние ОВ является высотой (кротчайшее расстояние).
AB равна половине длины хорды (по третьему свойству хорды).
Тогда, по теореме Пифагора:
AO2=OB2+AB2
AO2=722+(130/2)2
AO2=5184+4225=9409
AO=97 - это радиус окружности, следовательно, диаметр:
D=2*AO=2*97=194
Ответ: 194

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1520BE

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 50° и 85°. Найдите меньший угол параллелограмма.



Задача №1499CA

Углы при одном из оснований трапеции равны 48° и 42°, а отрезки, соединяющие середины противоположных сторон трапеции равны 6 и 3. Найдите основания трапеции.



Задача №351F19

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=8, CK=13.



Задача №F5B110

На окружности отмечены точки A и B так, что меньшая дуга AB равна 92°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №1F4EE8

Найдите площадь треугольника, изображённого на рисунке.

Комментарии:


(2024-05-16 18:52:08) Милана: Дана окружность с центром О, через который проходят две хорды. Найди < D AB, если

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Биссектриса угла - луч с началом в вершине угла, делящий угол на два равных угла.

Медиана треугольника - отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.

Высота треугольника — перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону. В зависимости от типа треугольника высота может содержаться внутри треугольника (для остроугольного треугольника), совпадать с его стороной (являться катетом прямоугольного треугольника) или проходить вне треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика