В остроугольном треугольнике ABC высота AH равна 20√
Треугольник ABH
прямоугольный, т.к. AH -
высота.
Тогда по
теореме Пифагора:
AB2=AH2+BH2
402=(20√
1600=400*3+BH2
400=BH2
BH=20
По
определению:
cos∠B=BH/AB=20/40=1/2=0,5
Ответ: cos∠B=0,5
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 13 и 7. Найдите площадь параллелограмма ABCD.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.
В трапеции ABCD AB=CD, ∠BDA=10° и ∠BDC=109°. Найдите угол ABD. Ответ дайте в градусах.
Лестница соединяет точки A и B и состоит из 15 ступеней. Высота каждой ступени равна 28 см, а длина – 96 см. Найдите расстояние между точками A и B (в метрах).
Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 7°. Найдите величину угла OMK. Ответ дайте в градусах.
Комментарии:
(2021-12-15 15:59:07) хуесос: )))