Боковая сторона равнобедренного треугольника равна 10, а основание равно 12. Найдите площадь этого треугольника.
Площадь треугольника равна a*h/2, где h -
высота треугольника, а - сторона треугольника, к которой проведена высота.
SABC=AC*BD/2
AD=DC=AC/2=12/2=6 (по
свойству равнобедренного треугольника высота является
медианой)
Тогда, по
теореме Пифагора:
AB2=BD2+AD2
102=BD2+62
100=BD2+36
BD2=64
BD=8
SABC=AC*BD/2=12*8/2=48
Ответ: SABC=48
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.
В прямоугольном треугольнике катет и гипотенуза равны 16 и 34 соответственно. Найдите другой катет этого треугольника.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 35° и 30°. Найдите больший угол параллелограмма.
В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=7, DK=14, BC=10. Найдите AD.


Комментарии:
(2022-05-12 09:27:42) : квадрат со стороной 8 см описан около окружности. найдите площадь прямоугольного треугольника с острым углом 30, вписанного в данную окружность
(2014-05-17 14:33:39) Администратор: Танюшка, спасибо, хорошее логичное решение. Опубликуем в скором времени.
(2014-05-17 14:29:36) танюшка: Можно решить через теорему Герона. Боковые стороны равны между собой и равны 10.Находим полупериметр: р=(10+10+12)/2=16.Подставляем данные в формулу: S=√16(16-10)*(16-10)*(16-12); S=√64*36 ; S=8*6=48