В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.
По
теореме о сумме углов треугольника:
180°=∠A+∠B+∠C
∠B=180°-∠A-∠C=180°-30°-50°=100°.
∠ABD=∠B/2=100°/2=50° (т.к. BD -
биссектриса).
Рассмотрим треугольник BHC.
По
теореме о сумме углов треугольника:
180°=∠CHB+∠C+∠CBH=50°+90°+∠CBH
∠CBH=180°-50°-90°=40°.
Тогда искомый угол ∠DBH=∠B-∠ABD-∠CBH=100°-50°-40°=10°.
Ответ: 10
Поделитесь решением
Присоединяйтесь к нам...
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
Какие из данных утверждений верны? Запишите их номера.
1) Через две различные точки на плоскости проходит единственная прямая.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=12, AC=42, NC=25.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.
Комментарии: