В треугольнике ABC проведена биссектриса AL, угол ALC равен 52°, угол ABC равен 13°. Найдите угол ACB. Ответ дайте в градусах.
Рассмотрим треугольник ABL.
∠BLA=180°-∠ALC=180°-52°=128° (т.к. это
смежные углы)
По
теореме о сумме углов треугольника:
180°=∠ABC+∠BLA+∠LAB=13°+128°+∠LAB
∠LAB=180°-13°-128°=39°
Рассмотрим треугольник ALC.
∠LAC=∠LAB=39° (т.к. AL -
биссектриса)
По
теореме о сумме углов треугольника:
180°=∠ALC+∠ACB+∠LAC=52°+∠ACB+39°
∠ACB=180°-52°-39°=89°
Ответ: 89
Поделитесь решением
Присоединяйтесь к нам...
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 26:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 7.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
В прямоугольном треугольнике один из катетов равен 24, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 9:7. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
Комментарии: