В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По
теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED -
прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это
соответственные углы)
Треугольники AED и BEC
подобны (по
первому признаку подобия треугольников).
Тогда по
определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
49/21=(20+BE)/BE
49BE/21=20+BE
28BE/21=20
BE=20*21/28=15
Обозначим точку F - точку касания прямой CD и окружности.
OF - искомый радиус окружности. Он перпендикулярен касательной EC (по
свойству касательной).
Проведем отрезок ОК перпендикулярно АВ.
OK - серединный перпендикуляр к
хорде AB (
третье свойство хорды)
Получается, что BK=AB/2=20/2=10.
EK=BE+BK=15+10=25
EK=OF=R=25, так как OKEF - прямоугольник.
Ответ: 25
Поделитесь решением
Присоединяйтесь к нам...
Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.
Точки M и N являются серединами сторон AB и BC треугольника ABC, сторона AB равна 28, сторона BC равна 19, сторона AC равна 34. Найдите MN.
Лестницу длиной 3 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,8 м?
Какое из следующих утверждений верно?
1) Один из двух смежных углов острый, а другой тупой.
2) Площадь квадрата равна произведению двух его смежных сторон.
3) Все хорды одной окружности равны между собой.
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Комментарии:
(2018-01-19 21:22:57) Администратор: Евгений Бакин, согласен с Вами. Решение упрощено по Вашему варианту.
(2017-12-29 11:41:46) Евгений Бакин: Проще найти сразу OF=EK=EB+BK=15+10=25