AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Рассмотри треугольник OCB.
OB=OC (т.к. это радиусы)
Следовательно, треугольник OCB -
равнобедренный.
Тогда ∠ACB=∠CBD=74° (по
свойству равнобедренного треугольника).
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBD+∠BOC
180°=74°+74°+∠BOC
∠BOC=32°
∠BOC=∠AOD=32° (т.к. они
вертикальные).
Ответ: 32
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7.
Точка O – центр окружности, на которой лежат точки H, I и K таким образом, что OHIK – ромб. Найдите угол OHI. Ответ дайте в градусах.
Сторона квадрата равна 56. Найдите радиус окружности, вписанной в этот квадрат.
На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
В трапеции
ABCD AB=CD, /BDA=67° и /BDC=28°. Найдите угол ABD. Ответ дайте в градусах.
Комментарии: