В выпуклом четырехугольнике ABCD AB=BC, AD=CD, ∠B=100° , ∠D=104°. Найдите угол A . Ответ дайте в градусах.
Проведем диагональ AC.
Рассмотрим треугольник ABC.
Так как AB=BC, значит треугольник ABC -
равнобедренный.
По
теореме о сумме углов треугольника:
180°=∠B+∠BAC+∠BCA.
180°=100°+∠BAC+∠BCA.
80°=∠BAC+∠BCA.
По
свойству равнобедренного треугольника, ∠BAC=∠BCA, тогда
∠BAC=∠BCA=80°/2=40°.
Треугольник ACD тоже
равнобедренный.
Аналогичными вычислениями получаем:
180°=104°+∠DAC+∠DCA.
∠DAC+∠DCA=76°/2=38°
∠A=∠BAC+∠CAD=40°+38°=78°
Ответ: 78
Поделитесь решением
Присоединяйтесь к нам...
Синус острого угла A треугольника ABC равен . Найдите CosA.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.
Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 35° соответственно. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, BC=2, sinA=0,2. Найдите AB.
Найдите тангенс угла
AOB.
Комментарии: