Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 85° и 30°. Найдите меньший угол параллелограмма.
По
свойству
параллелограмма /B=/D=85°+30°=115° и /A=/C.
Найдем углы A и C.
Стороны AD и BC параллельны (по
определению параллелограмма). Если рассмотреть BD как секущую к этим параллельным прямым, то становится очевидным, что /CBD=/ADB=85° (т.к. они
накрест лежащие).
Рассмотрим треугольник ABD.
По
теореме о сумме углов треугольника мы можем написать: 180°=/ABD+/BDA+/A
180°=30°+85°+/A
/A=65°=/C
115>65, следовательно углы A и C - меньшие.
Ответ: меньший угол равен 65°.
Поделитесь решением
Присоединяйтесь к нам...
В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.
Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна
130°.
Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
Синус острого угла A треугольника ABC равен
. Найдите CosA.
Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
Комментарии:
(2016-03-05 20:33:00) Администратор: Сэм, уточните, где именно ошибка?
(2016-03-04 17:36:26) сэм: у вас ошибка в написание