Центральный угол AOB равен 60°. Найдите длину хорды AB, на которую он опирается, если радиус окружности равен 5.
Рассмотрим треугольник АОВ. АО=ОВ, т.к. это радиусы окружности. Следовательно,
треугольник АОВ - равнобедренный. Следовательно, /ОВА = /ОАВ (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника 180°=/AOB+/ОАВ+/ОBA. => /ОАВ+/ОBA=180°-60°=120°
А т.к. /ОАВ=/ОBA, то /ОАВ=/ОBA=120°/2=60°
Следовательно треугольник АОВ - равносторонний (по свойству равностороннего треугольника). Следовательно, R=ОВ=ОА=АВ=5.
Ответ: AB=5.
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.
Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Радиус окружности с центром в точке O равен 29, длина хорды AB равна 40 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.
Комментарии:
(2015-04-28 19:33:07) Администратор: Иван, спасибо, что заметили опечатку. Ответ тот же, но замечание верное. еще раз спасибо!
(2015-04-28 16:44:20) Иван: Почему Ответ: R=5?Когда нам надо найти длину хорды AB