Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
По
первому свойству равностороннего треугольника, все его углы равны 60°.
По
теореме синусов:
2R=a/sin60
a=2R*sin60= (найдем sin60 по таблице)
=2*10*√3/2=10√3
По второму свойству равностороннего треугольника, высота равна:
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.
В треугольнике ABC угол C равен 90°, sinA=9/10, AC=√
В треугольнике ABC угол C равен 133°. Найдите внешний угол при вершине C. Ответ дайте в градусах.
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=14.
Комментарии: