Синус острого угла A треугольника ABC равен . Найдите CosA.
Так как нам ничего не известно про треугольник ABC, прямоугольный он или нет и т.д. То остается только воспользоваться
основной тригонометрической формулой:
sin2A+cos2A=1
По
второму правилу действий со степенями:
Применим
первое правило действий со степенями для числителя:
cosA=√0,01=0,1
Ответ: 0,1
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около квадрата, равен 36√2. Найдите длину стороны этого квадрата.
Косинус острого угла А треугольника равен . Найдите sinA.
В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=216, HC=54 и ∠ACB=40°. Найдите угол AMB. Ответ дайте в градусах.
На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.
Укажите номера верных утверждений.
1) Центры вписанной и описанной окружностей равнобедренного треугольника совпадают.
2) Существует параллелограмм, который не является прямоугольником.
3) Сумма углов тупоугольного треугольника равна 180°.
Комментарии: