Высота равностороннего треугольника равна 13√3. Найдите сторону этого треугольника.
В равностороннем треугольнике все стороны равны, пусть стороны равны "а".
По свойству равностороннего треугольника высота так же является и медианой, т.е. делит сторону по полам.
Треугольники, которые образует высота, являются прямоугольными.
Следовательно, к ним можно применить теорему Пифагора:
3a2=4*169*3 |:3
a2=4*169
a2=676
a=√676=26
Ответ: 26
Поделитесь решением
Присоединяйтесь к нам...
Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.
Известно, что около четырёхугольника ABCD можно описать окружность и что продолжения сторон AB и CD четырёхугольника пересекаются в точке M. Докажите, что треугольники MBC и MDA подобны.
В треугольнике ABC известно, что AB=6, BC=10, sin∠ABC=1/3. Найдите площадь треугольника ABC.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 37°, угол ABC равен 25°. Найдите угол ACB. Ответ дайте в градусах.
Найдите угол ABC. Ответ дайте в градусах.
Комментарии: