В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.
Так как ∠С=90°, то треугольник ABC -
прямоугольный.
Следовательно:
sinB=AC/AB=6/10=0,6 (по определению).
Ответ: 0,6
Поделитесь решением
Присоединяйтесь к нам...
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 8,4, а AB=4.
Найдите площадь треугольника, изображённого на рисунке.
Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Комментарии: