Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №CF5F48

Задача №925 из 1020
Условие задачи:

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Решение задачи:

Периметр параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK - биссектриса)
Получается, что треугольник ABK - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BK=7
P=2(AB+BC)=2(AB+BK+KC)=2(7+7+12)=52
Ответ: 52

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Введите порядковый номер задачи для раздела 'ОГЭ, Математика.
Геометрия:' (от 1 до 1020)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика