Четырёхугольник ABCD вписан в окружность. Угол ABC равен 138°, угол CAD равен 83°. Найдите угол ABD. Ответ дайте в градусах.
∠ABC является вписанным углом и опирается на дугу ADC (красная).
Следовательно, по теореме о вписанном угле, градусная мера дуги ADC равна 138°*2=276°
Тогда градусная мера синей дуги равна 360°-276°=84°
∠ADC тоже является вписанным углом и опирается на дугу ABC (синяя).
Следовательно, по той же теореме о вписанном угле∠ADC=84°/2=42°.
Рассмотрим треугольник ACD.
По теореме о сумме углов треугольника запишем:
180°=∠ADC+∠CAD+∠ACD
180°=42°+83°+∠ACD
180°-42°-83°=∠ACD
∠ACD=55°
Заметим, что углы ACD и ABD являются вписанными и опираются на одну и ту же дугу.
Следовательно, эти углы равны, ∠ACD=∠ABD=55°
Ответ: 55
Поделитесь решением
Присоединяйтесь к нам...
В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.
Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=27. Площадь треугольника ABC равна 96. Найдите площадь треугольника MBN.
Боковые стороны AB и CD трапеции ABCD равны соответственно 18 и 30, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
В параллелограмме ABCD точка E — середина стороны AB. Известно, что EC=ED. Докажите, что данный параллелограмм - прямоугольник.
Комментарии: