В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D.
Найдите CD.
Проведем дополнительный отрезок и введем обозначения как показано на рисунке:
Рассмотрим треугольники AEB и AFB.
∠BAE - общий
Треугольник AEB - прямоугольный, т.к. центр окружности лежит на стороне этого треугольника (
теорема об описанной окружности)
Т.е. ∠EBA=90°
∠AFB=90°, т.к. по условию AD ⊥ AE
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда:
AE/AB=AB/AF => AE*AF=AB2
Рассмотрим треугольники AEC и AFD.
∠FAD - общий
∠ACE=90°, т.к. AE - диаметр окружности (
теорема об описанной окружности)
∠AFD=90°, т.к. по условию BD ⊥ AE
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда:
AE/AD=AC/AF => AD=AE*AF/AC
Подставляем выше найденное равенство:
AD=AB2/AC=302/100=9
CD=AC-AD=100-9=91
Ответ: 91
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 512√
Проектор полностью освещает экран A высотой 100 см, расположенный на расстоянии 170 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 340 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?
Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?
Центральный угол AOB, равный
60°, опирается на хорду АВ длиной 4. Найдите радиус окружности.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии:
(2020-05-05 17:14:49) Администратор: Влад, это не бред, а опечатка. Исправлено!
(2020-05-05 16:53:07) Влад: че за бред? как отрезки, лежащие на одной стороне могут быть перпендикулярны?!?!?!