ОГЭ, Математика. Геометрия: Задача №A5F365 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №A5F365

Задача №818 из 1084
Условие задачи:

В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Решение задачи:

Проведем дополнительный отрезок и введем обозначения как показано на рисунке:
Рассмотрим треугольники AEB и AFB.
∠BAE - общий
Треугольник AEB - прямоугольный, т.к. центр окружности лежит на стороне этого треугольника ( теорема об описанной окружности)
Т.е. ∠EBA=90°
∠AFB=90°, т.к. по условию AD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AB=AB/AF => AE*AF=AB2
Рассмотрим треугольники AEC и AFD.
∠FAD - общий
∠ACE=90°, т.к. AE - диаметр окружности ( теорема об описанной окружности)
∠AFD=90°, т.к. по условию BD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AD=AC/AF => AD=AE*AF/AC
Подставляем выше найденное равенство:
AD=AB2/AC=302/100=9
CD=AC-AD=100-9=91
Ответ: 91

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №22FD03

В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.



Задача №0C87C3

Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 31°. Найдите угол B этой трапеции. Ответ дайте в градусах.



Задача №2B00D0

Медиана равностороннего треугольника равна 13√3. Найдите его сторону.



Задача №99B7F9

Синус острого угла A треугольника ABC равен 21/5. Найдите cosA.



Задача №3A1860

Площадь прямоугольного треугольника равна 9683. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.

Комментарии:


(2020-05-05 17:14:49) Администратор: Влад, это не бред, а опечатка. Исправлено!
(2020-05-05 16:53:07) Влад: че за бред? как отрезки, лежащие на одной стороне могут быть перпендикулярны?!?!?!

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика