В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 13, 9 и 5. Найдите площадь параллелограмма ABCD.
По
свойству касательной:
OF - радиус окружности, т.к. OF проходит через центр окружности и перпендикулярен
касательной AC.
AG=AF
BG=BH=x
CH=CF=y
AF найдем по
теореме Пифагора:
AO2=AF2+OF2
132=AF2+52
169=AF2+25
AF2=144
AF=12=AG
EH -
высота параллелограмма. EH=OH+OE=5+9=14
SABC=p*r, где p - полупериметр, r - радиус вписанной окружности.
p=(AB+BC+AC)/2.
Рассмотрим треугольники ABC и CDA.
AD=BC и AB=CD (по
свойству параллелограмма).
AC - общая сторона.
Следовательно, по
третьему признаку равенства треугольников, данные треугольники равны.
Тогда:
SABCD=2*SABC
И в тоже время SABCD=EH*AD.
Приравняем полученные равенства:
p*r=EH*AD/2
(AB+BC+AC)/2*r=EH*BC/2
(AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC)
(12+x+x+y+y+12)*5=14*(x+y)
(24+2x+2y)*5=14*(x+y)
120+5(2x+2y)=14*(x+y)
120+10(x+y)=14*(x+y)
120=4(x+y)
x+y=30=BC=AD
SABCD=EH*AD=14*30=420
Ответ: 420
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.
Найдите площадь треугольника, изображённого на рисунке.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Длина стороны AC равна 4. Найдите радиус описанной окружности треугольника ABC.
В треугольнике ABC угол A равен 45°, угол B равен 30°, BC=8√2. Найдите AC.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 80°. Найдите меньший угол параллелограмма.
Комментарии:
(2016-04-18 11:48:14) Администратор: Даниил, конечно это опечатка, спасибо огромное, что нашли. Исправлено!
(2016-04-17 23:14:25) Даниил: (AG+GB+BH+HC+CF+AF)*r=EH*(BH+HC) (12+x+x+y+y+4)*5=14*(x+y) откуда 4=AF