ОГЭ, Математика. Геометрия: Задача №1586C3 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1586C3

Задача №767 из 1087
Условие задачи:

Основания трапеции равны 8 и 18. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из её диагоналей.

Решение задачи:

Обозначим ключевые точки, как показано на рисунке.
Рассмотрим треугольник ABC.
AF=FB (по определению средней линии трапеции).
Тогда, по теореме Фалеса:
AE=EC
Получается, что FE - средняя линия треугольника ABC.
FE=BC/2=8/2=4 (по теореме о средней линии треугольника).
Рассмотрим треугольник ACD.
Аналогично, EG - средняя линия данного треугольника, следовательно EG=AD/2=18/2=9.
Ответ: 9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1A5A9C

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, BC=32. Найдите AK.



Задача №F4E03B

Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.



Задача №78E39F

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AOD.



Задача №07378B

В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.



Задача №0F5583

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади четырехугольника KPCM к площади треугольника ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика