Площадь прямоугольного треугольника равна 128√
Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 (
табличное значение)
sin30°=a/c=1/2 (по
определению синуса)
c=2a
По
теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a√
Из условия: Sтреугольника=ab/2=128√
a*a√
Сокращаем √
a2=128*2=256
a=16
Ответ: a=16
Поделитесь решением
Присоединяйтесь к нам...
В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.
Сторона равностороннего треугольника равна 12√3. Найдите радиус окружности, описанной около этого треугольника.
В треугольнике ABC угол C равен 90°, sinB=4/9, AB=18. Найдите AC.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 36 и 39.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии: