ОГЭ, Математика. Геометрия: Задача №60E3AB | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

∠GAE=∠BEA (т.к. они накрест-лежащие)
∠GAE=∠BEA=∠BAE (т.к. AE - биссектриса).
Получается, что треугольник ABE - равнобедренный.
BF - биссектриса, а по свойству равнобедренного треугольника, она так же и медиана и высота.
Таким образом, получается, что треугольник ABF - прямоугольный.
По теореме Пифагора:
AB2=AF2+BF2
AB2=82+152
AB2=64+225=289
AB=17
Ответ: 17

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №096C5B

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=24, AC=21, MN=14. Найдите AM.



Задача №1B4DE1

Найдите угол АСО, если его сторона СА касается окружности, О — центр окружности, а дуга AD окружности, заключённая внутри этого угла, равна 110°.



Задача №F0670B

Найдите площадь треугольника, изображённого на рисунке.



Задача №77E678

Какие из данных утверждений верны? Запишите их номера.
1) Через две различные точки на плоскости проходит единственная прямая.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.



Задача №B91F47

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика