ОГЭ, Математика. Геометрия: Задача №60E3AB | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

∠GAE=∠BEA (т.к. они накрест-лежащие)
∠GAE=∠BEA=∠BAE (т.к. AE - биссектриса).
Получается, что треугольник ABE - равнобедренный.
BF - биссектриса, а по свойству равнобедренного треугольника, она так же и медиана и высота.
Таким образом, получается, что треугольник ABF - прямоугольный.
По теореме Пифагора:
AB2=AF2+BF2
AB2=82+152
AB2=64+225=289
AB=17
Ответ: 17

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №032494

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.



Задача №56CD5D

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника BMC.



Задача №C8A9ED

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.



Задача №CD62B1

Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 16,5 см, а длина – 28 см. Найдите расстояние между точками A и B (в метрах).



Задача №FC110F

В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика