Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Градусная мера всей окружности 360°.
Разделим ее на равные условные части так, чтобы одна дуга имела 3 такие части, вторая дуга 7 частей, а третья 8 частей (как у условии задачи). Тогда понятно, что нам нужно 3+7+8 таких частей, итого 18.
Градусная мера каждой части равна 360°/18=20°.
Тогда наша первая дуга имеет градусную меру 20°*3=60°, вторая - 20°*7=140°, третья - 20°*8=160°.
Углы ABC, BCA и CAB -
вписанные в окружность, следовательно, они равны половине градусной меры дуги, на которую опираются, т.е.:
Один угол равен 30°, второй 70°, а третий 80°.
По
теореме о соотношении углов и сторон треугольника: на против меньшей стороны лежит меньший угол. Меньший угол равен 30° (это мы только что вычислили), а меньшая сторона равна 20 (по условию задачи).
По
теореме синусов 20/sin30°=2R
20/0,5=2R
40=2R
R=20
Ответ: 20
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC известно, что ∠BAC=64°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.
Сколько досок длиной 3,5 м, шириной 20 см и толщиной 10 мм выйдет из бруса длиной 140 дм, имеющего в сечении прямоугольник размером 50 см × 60 см?
Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 35° соответственно. Ответ дайте в градусах.
Комментарии: