ОГЭ, Математика. Геометрия: Задача №625DBE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №625DBE

Задача №693 из 1087
Условие задачи:

Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.

Решение задачи:

Градусная мера всей окружности 360°.
Разделим ее на равные условные части так, чтобы одна дуга имела 3 такие части, вторая дуга 7 частей, а третья 8 частей (как у условии задачи). Тогда понятно, что нам нужно 3+7+8 таких частей, итого 18.
Градусная мера каждой части равна 360°/18=20°.
Тогда наша первая дуга имеет градусную меру 20°*3=60°, вторая - 20°*7=140°, третья - 20°*8=160°.
Углы ABC, BCA и CAB - вписанные в окружность, следовательно, они равны половине градусной меры дуги, на которую опираются, т.е.: Один угол равен 30°, второй 70°, а третий 80°.
По теореме о соотношении углов и сторон треугольника: на против меньшей стороны лежит меньший угол. Меньший угол равен 30° (это мы только что вычислили), а меньшая сторона равна 20 (по условию задачи).
По теореме синусов 20/sin30°=2R
20/0,5=2R
40=2R
R=20
Ответ: 20

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №C9CE1D

Прямая y=2x+b касается окружности x2+y2=5 в точке с положительной абсциссой. Определите координаты точки касания.



Задача №479CA6

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=25, BC=15, CF:DF=3:2.



Задача №012266

В треугольнике ABC угол C равен 90°, sinA=4/5, AC=9. Найдите AB.



Задача №A36A43

Основание AC равнобедренного треугольника ABC равно 6. Окружность радиуса 4,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №A77AB8

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика