В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=52 и CH=13. Найдите cosB.
Треугольник ABH
прямоугольный (т.к. AH -
высота).
Тогда cosB=BH/AB (по
определению).
AB=BC (по условию).
BC=BH+CH=52+13=65=AB
cosB=BH/AB=52/65=0,8
Ответ: 0,8
Поделитесь решением
Присоединяйтесь к нам...
Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD=36.
Найдите угол ABC . Ответ дайте в градусах.
Стороны AC, AB, BC треугольника ABC равны 2√
Четырёхугольник ABCD описан около окружности, AB=7, BC=10, CD=14. Найдите AD.
В трапеции ABCD AB=CD, AC=AD и ∠ABC=123°. Найдите угол CAD. Ответ дайте в градусах.
Комментарии: