Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №210C80

Задача №671 из 1066
Условие задачи:

Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 44°, 71° и 65°.

Решение задачи:

Пусть:
∠KMP=44°
∠MKP=71°
∠KPM=65°
Рассмотрим треугольник AMK.
AM=AK (по второму свойству касательной)
Следовательно треугольник AMK - равнобедренный, тогда, по свойству равнобедренного треугольника:
∠AMK=∠AKM
Заметим, что оба этих угла охватывают дугу MK, и следовательно равны половине ее градусной меры (по свойству углов на окружности).
∠KPM является вписанным в окружность углом и опирается на эту же дугу, следовательно и он равен половине градусной меры этой дуги.
Получается, что:
∠AMK=∠AKM=∠KPM=65°
Применив теорему о сумме углов треугольника:
180°=∠AMK+∠AKM+∠MAK
180°=65°+65°+∠MAK
∠MAK=50°
Аналогично, для двух других треугольников получим:
∠BKP=∠BPK=∠KMP=44°
∠KBP=180°-44°-44°=92°
И...
∠CPM=∠CMP=∠MKP=71°
∠PCM=180°-71°-71°=38°
Ответ: 50°, 92° и 38°

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №1A8117

Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол ABC. Ответ дайте в градусах.

Задача №00ECB0

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Задача №224FA1

Найдите площадь трапеции, изображённой на рисунке.

Задача №D39CE0

Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.

Задача №84B6C0

В треугольнике АВС углы А и С равны 30° и 50° соответственно. Найдите угол между высотой ВН и биссектрисой BD.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика