Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №0A7291

Задача №568 из 1084
Условие задачи:

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.

Решение задачи:

Проведем отрезки CM и MB.
∠BMC является вписанным в окружность и опирается на дугу в 180° (так как BC - диаметр окружности).
Следовательно, ∠BMC=90° (по теореме о вписанном угле).
Получается, что треугольник MBC - прямоугольный.
Рассмотрим треугольники MBC и MBD.
∠BMC=∠BDM=90°
∠MBD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Рассмотрим треугольники MBC и MDС.
∠BMC=∠MDC=90°
∠MCD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Значит треугольник MBD подобен треугольнику MDС.
Тогда: MD/BD=CD/MD
MD2=CD*BD
32=CD*BD
9=CD*BD
Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.
∠AEH=∠BDH=90°
∠AHE=∠BHD (так как это вертикальные углы).
Следовательно, используя теорему о сумме углов треугольника, получаем, что ∠HAE=∠HBD.
Рассмотрим треугольники ADC и BDH.
∠HAE=∠HBD (как мы уже выяснили).
∠ADC=∠BDH=90°
Следовательно, данные треугольники подобны (по первому признаку подобия).
Тогда:
AD/BD=DC/DH
AD*DH=BD*DC=9 (см. выше).
DH=9/AD=9/15=0,6
AH=AD-DH=15-0,6=14,4
Ответ: AH=14,4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №CF5F48

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=7, CK=12.

Задача №0EF7A9

В треугольнике ABC AC=15, BC=57, угол C равен 90°. Найдите радиус описанной окружности этого треугольника.

Задача №FE0565

В окружности с центром O AC и BD – диаметры. Центральный угол AOD равен 128°. Найдите вписанный угол ACB. Ответ дайте в градусах.

Задача №F13885

В параллелограмме ABCD точка K — середина стороны CD. Известно, что KA=KB. Докажите, что данный параллелограмм — прямоугольник.

Задача №3D67DD

Точка O – центр окружности, на которой лежат точки A, B и C. Известно, что ∠ABC=43° и ∠OAB=13°. Найдите угол BCO. Ответ дайте в градусах.

Комментарии:


(2015-05-12 17:35:01) : Спасибь

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика