На окружности с центром O отмечены точки A и B так, что ∠AOB=40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги.
∠AOB - является
центральным и равен градусной мере дуги, на которую опирается.
Следовательно, градусная мера меньшей дуги AB тоже составляет 40°.
Значит градусная мера большей дуги равна 360°-40°=320°
Пусть х - длина большей дуги, тогда получаем пропорцию:
40° - длина 50
320° - длина х
40/320=50/x
x=320*50/40=8*50=400
Ответ: 400
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 1 м, а длинное плечо — 3 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Диагонали AC и BD прямоугольника ABCD пересекаются в точке O, BO=37, AB=56. Найдите AC.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.
Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 32°. Найдите угол C этой трапеции. Ответ дайте в градусах.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 57. Найдите площадь четырёхугольника ABMN.
Комментарии: