На окружности с центром O отмечены точки A и B так, что ∠AOB=40°. Длина меньшей дуги AB равна 50. Найдите длину большей дуги.
∠AOB - является
центральным и равен градусной мере дуги, на которую опирается.
Следовательно, градусная мера меньшей дуги AB тоже составляет 40°.
Значит градусная мера большей дуги равна 360°-40°=320°
Пусть х - длина большей дуги, тогда получаем пропорцию:
40° - длина 50
320° - длина х
40/320=50/x
x=320*50/40=8*50=400
Ответ: 400
Поделитесь решением
Присоединяйтесь к нам...
Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).
Медиана равностороннего треугольника равна 13√3. Найдите его сторону.
Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.
Найдите площадь трапеции, изображённой на рисунке.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=6 и HD=75. Диагональ параллелограмма BD равна 85. Найдите площадь параллелограмма.
Комментарии: