В остроугольном треугольнике ABC высота AH равна 20√
Треугольник ABH
прямоугольный, т.к. AH -
высота.
Тогда по
теореме Пифагора:
AB2=AH2+BH2
402=(20√
1600=400*3+BH2
400=BH2
BH=20
По
определению:
cos∠B=BH/AB=20/40=1/2=0,5
Ответ: cos∠B=0,5
Поделитесь решением
Присоединяйтесь к нам...
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 3 и 9.
Основания трапеции равны 2 и 6, а высота равна 3. Найдите среднюю линию этой трапеции.
На отрезке AB выбрана точка C так, что AC=75 и BC=10. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Комментарии:
(2021-12-15 15:59:07) хуесос: )))