Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
Площадь любого треугольника равна половине произведения
высоты и стороны, к которой
высота проведена.
Проведем
высоту как показано на рисунке.
По
свойству равнобедренного треугольника BE - и
высота, и
медиана. Следовательно, AE=EC=AC/2.
Треугольник ABE -
прямоугольный (т.к. BE -
высота).
По
теореме Пифагора найдем высоту BE:
AB2=AE2+BE2
AB2=(AC/2)2+BE2
342=(60/2)2+BE2
1156=900+BE2
BE2=256
BE=16
SABC=(BE*AC)/2=(16*60)/2=16*30=480
Ответ: SABC=480
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=12, а расстояние от точки K до стороны AB равно 9.
Точки M и N являются серединами сторон AB и BC треугольника ABC, AC=24. Найдите MN.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=10 и MB=18. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Комментарии:
(2014-05-28 22:37:16) Администратор: Павел, правильно заданный вопрос - это половина правильного ответа )))
(2014-05-28 21:36:02) Павел: Только написал и сразу понял
(2014-05-28 21:35:07) Павел: Откуда в 4 строчке 900?