ОГЭ, Математика. Геометрия: Задача №106F52 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №106F52

Задача №449 из 1087
Условие задачи:

В треугольнике ABC сторона AB=32, AC=64, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Решение задачи:

Проведем дополнительный отрезок и введем обозначения как показано на рисунке:
Рассмотрим треугольники AEB и AFB.
∠BAE - общий
∠EBA=90°, т.к. AE - диаметр окружности ( теорема об описанной окружности)
∠AFB=90°, т.к. по условию AD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AB=AB/AF => AE*AF=AB2
Рассмотрим треугольники AEC и AFD.
∠FAD - общий
∠ACE=90°, т.к. AE - диаметр окружности ( теорема об описанной окружности)
∠AFD=90°, т.к. по условию BD ⊥ AE
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда:
AE/AD=AC/AF => AD=AE*AF/AC
Подставляем выше найденное равенство:
AD=AB2/AC=322/64=16
CD=AC-AD=64-16=48
Ответ: CD=48

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №590EC4

Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.



Задача №E8391B

Сторона ромба равна 22, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №06FCF6

Боковые стороны AB и CD трапеции ABCD равны соответственно 18 и 30, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.



Задача №4257EE

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №4081C6

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 6 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:


(2017-05-20 00:10:22) Администратор: Alissa, да, это опечатка, спасибо, что обнаружили. Исправлено!
(2017-05-19 19:24:30) Alissa: В решении задачи есть такая запись\"∠AFB=90°, т.к. по условию AD ⊥ AE\". Почему \"AD ⊥ AE\"?У вас опечатка \"ВD ⊥ AE\"
(2017-05-17 22:39:41) Администратор: Лера, АЕ - это диаметр окружности, следовательно любой вписанный угол, который опирается на АЕ будет прямым. Поэтому ЕВ всегда будет перпендикулярен АВ.
(2017-05-17 21:33:21) Лера: Если начертить другой треугольник, то перпендикуляры из точки Е не будут опускаться в точку В, значит так задача не решится
(2017-02-01 15:25:29) Администратор: Ася, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2017-01-31 18:01:19) Ася: В треугольниках ABE и KMP известны стороны: AB=3,BE=5,AE=7.MP=15,PK=21 нАЙДИТЕ ДЛИНУ СТОРОНЫ mk ЕСЛИ угол P= углу E

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика