Окружности радиусов 3 и 33 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Рассмотрим
трапецию ACO1O2
Данная трапеция
прямоугольная, т.к. радиусы перпендикулярны
касательной AC (по
свойству касательной).
Проведем O2K параллельно AC, O2K=AC, т.к. ACKO2 -
прямоугольник.
По
теореме Пифагора:
(O1O2)2=(O2K)2+(KO1)2
(R+r)2=(O2K)2+(R-r)2
(33+3)2=(O2K)2+(33-3)2
1296=(O2K)2+900
(O2K)2=396
O2K=6√
Рассмотрим треугольники OAO2 и OCO1 (cм. Рис.1).
∠AOO2 - общий
∠OAO2=∠OCO1=90°
Следовательно эти треугольники
подобны (по
первому признаку подобия треугольников).
Тогда, R/r=OC/OA
33/3=OC/OA=(OA+AC)/OA
11OA=OA+6√
OA=6√
Из
подобия этих же треугольников:
R/r=O10/O2O
R/r=(O2O+R+r)/O2O
33/3=(O2O+33+3)/O2O
11(O2O)=O2O+36
10(O2O)=36
O2O=3,6
Обозначим угол ∠AOO2 как α
cosα=OA/OO2=6√
Посмотрим на треугольники OAE и OCF.
Они
прямоугольные по
второму свойству хорды.
Тогда для треугольника OAE:
cosα=OE/OA
OE=OA*cosα=6√
Для треугольника OCF:
cosα=OF/OC
OF=OC*cosα=(OA+AC)*cosα=(6√
EF=OF-OE=12,1-1,1=11
Ответ: EF=11
Поделитесь решением
Присоединяйтесь к нам...
Какое из следующих утверждений верно?
1) Площадь квадрата равна произведению двух его смежных сторон.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если две стороны одного треугольника соответственно равны двум сторонам другого треугольника, то такие треугольники равны.
Площадь прямоугольного треугольника равна 8√
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 67. Найдите площадь четырёхугольника ABMN.
Площадь равнобедренного треугольника равна 196√
Проектор полностью освещает экран A высотой 80 см, расположенный на расстоянии 250 см от проектора. На каком наименьшем расстоянии
(в сантиметрах) от проектора нужно расположить экран B высотой 160 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?
Комментарии:
(2017-11-01 22:08:16) Администратор: Марианна, спасибо большое! Опечатка исправлена.
(2017-10-31 09:12:30) Марианна: Опечатка в решении: подобными являются треугольники OAO2 и OCO1 (а не OCO2)