Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

ОГЭ, Математика.
Геометрия: Задача №A00346

Задача №424 из 1067
Условие задачи:

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.

Решение задачи:

По условию задачи AB перпендикулярна BC, следовательно перпендикулярна и AD (т.к. в трапеции основания параллельны).
Расстояние от точки Е до прямой CD - отрезок, перпендикулярный CD и проходящий через точку Е.
Продолжим стороны AB и CD до пересечения в точке T.
Проведем CK параллельно AB.
AK=BС (т.к. ABKC - прямоугольник).
KD=AD-AK=16-15=1
По определению косинуса: cos∠CDK=KD/CD=1/CD
Рассмотрим треугольники TCB и CKD.
∠CTB=∠DCK (т.к. это соответственные углы при параллельных прямых TA и CK)
∠TBC=∠CKD=90°
Следовательно, эти треугольники подобны (по первому признаку подобия).
Тогда, BC/KD=TC/CD
15/1=TC/CD
TC=15CD
По теореме о касательно и секущей:
TE2=TD*TC=(TC+CD)*TC=(15CD+CD)15CD=16CD*15CD=240CD2
TE=CD240=4CD15
Рассмотрим треугольники TEF и TAD.
∠CTB - общий
∠EFT=∠TAD=90°
Следовательно, применив теорему о сумме углов треугольника, получаем, что ∠TEF=∠ADT.
Следовательно, cos∠TEF=cos∠ADT.
EF=TE*cos∠TEF=TE*cos∠ADT
Так как ∠ADT и ∠CDK это один и тот же угол, то подставляем ранее найденное значение cos∠CDK=1/CD.
EF=TE/CD=4CD15/CD=415
Ответ: EF=415

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №B99C57

Лестница соединяет точки A и B. Высота каждой ступени равна 10,5 см, а длина – 36 см. Расстояние между точками A и B составляет 15 м. Найдите высоту, на которую поднимается лестница (в метрах).

Задача №A71C6A

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Задача №F1A0A9

Какова длина (в метрах) лестницы, которую прислонили к дереву, если верхний её конец находится на высоте 2,4 м над землёй, а нижний отстоит от ствола дерева на 1,8 м?

Задача №B51630

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=17. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Задача №BDF518

Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.

Комментарии:


(2017-03-17 02:08:01) Администратор: Карина, я добавил в решение пару строк, чтобы стало понятней.
(2017-03-16 11:04:30) Карина: Подскажите, пожалуйста, как получилось что TE*cos∠ADT=TE/CD?
(2017-02-20 21:18:33) Администратор: Марина, по теореме о касательной и секущей. Нажимайте на ссылки в тексте решения, будут показываться теоремы и определения, на которые я ссылаюсь при решении.
(2017-02-20 21:16:10) Марина: Скажите пожалуйста, почему TE2=TD*TC=(TC+CD)*ТС?
(2014-05-26 09:35:48) Администратор: Настя, по первому комментарию: указанные треугольники, конечно, подобны, но для решения подобие нам не интересно. Два угла одно треугольника равны двум углам другого треугольника, поэтому мы и применяем теорему о сумме углов треугольника, не используя подобие.
(2014-05-26 00:11:37) Настя: Спасибо большое за решение,оно мне очень помогло. Но есть один нюанс: треугольники TEF и TAD подобны по 2-м углам (как вы и указали), а потом уже по теореме о сумме углов треугольника получаем,что ∠TEF=∠ADT.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика