Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.
Пусть AD -
биссектриса, описанная в условии.
BC - сторона, равная 48.
Рассмотрим треугольник ADC.
Для этого треугольника CO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AC/CD=7/6
6*AC=7*CD
Рассмотрим треугольник ABD.
Для этого треугольника BO -
биссектриса,
По
свойству биссектрисы:
AO/OD=AB/BD=7/6
6*AB=7*BD
Складываем полученные равенства:
6*AC+6*AB=7*CD+7*BD
6(AC+AB)=7(CD+BD), CD+BD=BC=48
6(AC+AB)=7*48
AC+AB=56
PABC=AC+AB+BC=56+48=104
Ответ: PABC=104
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Существует ромб, который не является квадратом.
2) Если две стороны треугольника равны, то равны и противолежащие им углы.
3) Касательная к окружности параллельна радиусу, проведённому в точку касания.
Лестницу длиной 3 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,8 м?
Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 30 см, а длина – 40 см. Найдите расстояние между точками A и B (в метрах).
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AB=28, AC=24, MN=18. Найдите AM.
Укажите номера верных утверждений.
1) В тупоугольном треугольнике все углы тупые.
2) В любом параллелограмме диагонали точкой пересечения делятся пополам.
3) Точка, лежащая на серединном перпендикуляре к отрезку, равноудалена от концов этого отрезка.
Комментарии:
(2014-05-29 16:49:51) Администратор: Алла, так в сущности задача так и решена, просто решение расписано для понимания.
(2014-05-29 16:00:51) Алла: Каждая биссектриса треугольника делится в точке пересечение с биссектрисами в отношений суммы прилежащих сторон к противолежащей,считая от вершины. Тоесть по условию СО/OD=7/6=(AB+AC)/BC .Подставляя все значения будет 7/6=(AB+AC)/48. AB+AC=56,P ABC= AB+AC+BC=56+48=104.Мне кажется это решение будет короче и легче)