В прямоугольном треугольнике ABC катет AC=65, а высота CH, опущенная на гипотенузу, равна 13√
Вариант №1
Рассмотрим треугольники ABC и ACH.
∠AHC=∠ACB (т.к. это прямые углы).
∠A - общий.
Следовательно, по
теореме о сумме углов треугольника ∠ACH=∠ABC
Тогда sin∠ACH=sin∠ABC.
Теперь рассмотрим треугольник ACH.
По
теореме Пифагора:
AC2=CH2+AH2
652=(13√
4225=169*21+AH2
AH2=4225-3549
AH2=676
AH=26
sin∠ACH=AH/AC (по
определению)
sin∠ACH=26/65=0,4
Как было выведено выше:
sin∠ABC=sin∠ACH=0,4
Ответ: sin∠ABC=0,4
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 50√
Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 15 м от земли. Расстояние от основания флагштока
до места крепления троса на земле равно 8 м. Найдите длину троса. Ответ дайте в метрах.
Сторона ромба равна 8, а расстояние от центра ромба до неё равно 2. Найдите площадь ромба.
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.
Найдите угол ABC. Ответ дайте в градусах.
Комментарии:
(2021-02-11 16:45:24) Игорь : В треугольнике ABC, AC=13 см и биссектриса угла A делит сторону BC на отрезки BM=3см, MC=5см. Определите сторону AB.
(2015-11-16 22:51:08) Администратор: Валентина, хороший вариант. Я решил его опубликовать, спасибо.
(2015-11-13 12:15:00) валентина: 1)AH^2=4225-3549=676;AH=26. 2)AC^2=AB*AH;AB=4225:26=162,5. 3)sinABC=65:162,5=0,4. Тема:Пропорциональные отрезки в прямоугольном треугольнике:2).