Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=16, DC=24, AC=25.
Рассмотрим треугольники ABM и CDM.
∠AMB=∠CMD (т.к. они
вертикальные).
∠ABM=∠CDM (т.к. они
накрест-лежащие).
Следовательно, треугольники ABM и CDM
подобны (по
первому признаку подобия).
AC=AM+MC => AM=AC-MC
Тогда:
AB/CD=AM/MC
16/24=(AC-MC)/MC
16MC=24(25-MC)
2MC=3(25-MC)
2MC=75-3MC
5MC=75
MC=15
Ответ: MC=15
Поделитесь решением
Присоединяйтесь к нам...
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Точка О – центр окружности, /ACB=65° (см. рисунок). Найдите величину угла AOB (в градусах).
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 16,5 см, а длина – 28 см. Найдите расстояние между точками A и B (в метрах).
Радиус окружности, вписанной в равнобедренную трапецию, равен 20. Найдите высоту этой трапеции.
Комментарии: