Отрезки AB и DC лежат на параллельных прямых, а отрезки AC и BD пересекаются в точке M. Найдите MC, если AB=16, DC=24, AC=25.
Рассмотрим треугольники ABM и CDM.
∠AMB=∠CMD (т.к. они
вертикальные).
∠ABM=∠CDM (т.к. они
накрест-лежащие).
Следовательно, треугольники ABM и CDM
подобны (по
первому признаку подобия).
AC=AM+MC => AM=AC-MC
Тогда:
AB/CD=AM/MC
16/24=(AC-MC)/MC
16MC=24(25-MC)
2MC=3(25-MC)
2MC=75-3MC
5MC=75
MC=15
Ответ: MC=15
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
В трапеции ABCD AB=CD, ∠BDA=49° и ∠BDC=13°. Найдите угол ABD. Ответ дайте в градусах.
В треугольнике ABC известно, что AB=2, BC=3, AC=4. Найдите cos∠ABC.
Окружность пересекает стороны AB и AC треугольника ABC в точках K и P соответственно и проходит через вершины B и C. Найдите длину отрезка KP, если AK=18, а сторона AC в 1,2 раза больше стороны BC.
В треугольнике ABC угол C равен 135°, AB=14√2. Найдите радиус окружности, описанной около этого треугольника.
Комментарии: