ОГЭ, Математика. Геометрия: Задача №03A3EF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №03A3EF

Задача №383 из 1087
Условие задачи:

Площадь прямоугольного треугольника равна 7223. Один из острых углов равен 30°. Найдите длину катета, лежащего напротив этого угла.

Решение задачи:

Обозначим:
a - искомый катет
b - второй катет
c - гипотенуза
sin30°=1/2 ( табличное значение)
sin30°=a/c=1/2 (по определению синуса)
c=2a
По теореме Пифагора:
a2+b2=c2
a2+b2=(2a)2
b2=3a2
b=a3
Из условия: Sтреугольника=ab/2=7223
a*a3/2=7223
Сокращаем 3:
a2=722*2=1444
a=38
Ответ: a=38

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EB33B0

Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).



Задача №D5BFDE

От столба высотой 9 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 12 м. Вычислите длину провода.



Задача №D07B18

Радиус окружности, вписанной в равносторонний треугольник, равен 23. Найдите длину стороны этого треугольника.



Задача №116D41

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.



Задача №05E365

Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.

Комментарии:


(2015-05-04 15:53:49) Александр: Аа, точно. a^2+b^2=(2a)^2 то есть a^2+b^2=4a^2 и дальше b^2=-a^2+4a^2
(2015-05-04 15:50:57) Администратор: Александр, Вы ошибаетесь:
a2+b2=(2a)2
a2+b2=4a2
b2=4a2-a2
b2=3a2
(2015-05-04 15:46:26) Александр: Почему b^2+a^2=(2a)^2 и при переносе вы получаете b^2=3a^2 Вы должны поменять знак при переносе и получить b^2=-a^2+2a^2

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика