ОГЭ, Математика. Геометрия: Задача №14815C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №14815C

Задача №375 из 1084
Условие задачи:

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках K и M соответственно. Найдите AC, если BK:KA=1:4, KM=13.

Решение задачи:

Рассмотрим треугольники ABC и KBM.
/B - общий.
/BAC=/BKM (т.к. это соответственные углы)
/BCA=/BMK (т.к. это тоже соответственные углы)
Следовательно, эти треугольники подобны по первому признаку подобия.
Тогда по определению подобных треугольников:
BA/BK=AC/KM
(BK+KA)/BK=AC/KM
1+KA/BK=AC/KM
1+4/1=AC/KM
5=AC/13
AC=5*13=65
Ответ: AC=65

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EB43A2

На стороне АС треугольника АВС выбраны точки D и E так, что углы АDB и BEC равны (см. рисунок). Оказалось, что отрезки AЕ и CD тоже равны. Докажите, что треугольник АВС — равнобедренный.



Задача №5D6B72

Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.



Задача №079233

Сторона BC параллелограмма ABCD вдвое больше стороны AB. Точка K — середина стороны BC. Докажите, что AK — биссектриса угла BAD.



Задача №B6BD3C

Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.



Задача №2657CA

Косинус острого угла A треугольника ABC равен . Найдите sinA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика