Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.
По
свойству
равнобедренного треугольника:
высота, проведенная к основанию так же является и
медианой.
Следовательно, AD=DC=AC/2=60/2=30
Чтобы вычислить эту высоту треугольника воспользуемся
теоремой Пифагора:
AB2=BD2+AD2
342=BD2+302
1156=BD2+900
BD2=256
BD=16
Площадь треугольника: S=ah/2
S=60*16/2=480
Ответ: S=480
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
В трапеции ABCD AD=3, BC=1, а её площадь равна 12. Найдите площадь треугольника ABC.
На окружности с центром O отмечены точки A и B так, что
/AOB=66°. Длина меньшей дуги AB равна 99. Найдите длину большей дуги.
Найдите площадь параллелограмма, изображённого на рисунке.
В треугольнике ABC известно, что AC=38, BM — медиана, BM=17. Найдите AM.
Комментарии: