Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По
определению tgABC=AC/CB=2,4 => CB=AC/2,4.
По
теореме Пифагора AB2=AC2+CB2
AB2=AC2+(AC/2,4)2
AB2=6,76*AC2/5,76
AB=2,6*AC/2,4=1,3*AC/1,2
Необходимо вычислить AC.
По
теореме о сумме углов треугольника для треугольника ABC:
/CAB=180°-90°-/ABC
Для треугольника ACP:
/CAB=180°-90°-/ACP
Следовательно, /ABC=/ACP.
Рассмотрим треугольник ACP.
По
определению tgACP=AP/CP=2,4 => AP=2,4*CP.
По
теореме Пифагора AC2=CP2+AP2
AC2=CP2+(2,4*CP)2
AC2=6,76*CP2
AC=2,6*CP
CP=AC/2,6
r=(AP+CP-AC)/2
2*r=2,4*CP+CP-AC
2*r=3,4CP-AC
2*12=3,4*AC/2,6-AC
24=0,8*AC/2,6
30=AC/2,6
78=AC
Вычислив AC, мы можем вычислить AB и CP, указанные выше:
AB=1,3*AC/1,2=1,3*78/1,2=13*78/12=13*26/4=84,5
CB=AC/2,4=78/2,4=32,5
R=(AC+CB-AB)/2, тогда получаем:
R=(78+32,5-84,5)/2=13.
Ответ: R=13.
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.
В треугольнике ABC угол C равен 90°, cosB=2/5, AB=10. Найдите BC.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если угол BAC равен 74°. Ответ дайте в градусах.
Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.
Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 50° и 85°. Найдите меньший угол параллелограмма.
Комментарии: