Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.
Рассмотрим каждое утверждение:
1) "Существует прямоугольник, который не является параллелограммом", это утверждение неверно, т.к. любой
прямоугольник полностью удовлетворяет
определению параллелограмма.
2) "Треугольник с углами 40° , 70°, 70° — равнобедренный", это утверждение верно, по
свойству
равнобедренного треугольника.
3) "Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны". MA и MB -
касательные, тогда, по второму свойству касательной, это утверждение верно.
Поделитесь решением
Присоединяйтесь к нам...
В окружности с центром в точке O проведены диаметры AD и BC, угол OAB равен 70°. Найдите величину угла OCD.
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
Сторона ромба равна 60, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Синус острого угла A треугольника ABC равен . Найдите CosA.
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=57°. Найдите величину угла BOC. Ответ дайте в градусах.
Комментарии: