Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №029772

Задача №203 из 1084
Условие задачи:

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.

Решение задачи:

Рассмотрим каждое утверждение.
1) " Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию", это утверждение верно, по свойству равнобедренного треугольника - такая биссектриса является и медианой, и высотой, следовательно, она перпендикулярна основанию.
2) "Диагонали ромба точкой пересечения делятся пополам", это утверждение верно, т.к. это утверждение является свойством параллелограмма, а ромб - это тоже параллелограмм.
3) "Из двух хорд окружности больше та, середина которой находится дальше от центра окружности", это утверждение неверно. Диаметр - это наибольшая хорда, следовательно, чем центр хорды ближе к центру окружности, тем хорда больше.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №4F3926

В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.

Задача №C396A2

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.

Задача №038E4A

Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.

Задача №EE4155

Косинус острого угла A треугольника ABC равен . Найдите sinA.

Задача №524060

В треугольнике ABC известно, что AB=BC, ∠ABC=122°. Найдите угол BCA. Ответ дайте в градусах.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика