Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
По свойству
равнобедренной трапеции - углы при основании равны. Тогда ∠CBA=30°+105°=135°.
Сумма углов четырехугольника равна 360°, тогда получаем, что 360°=135°+135°+∠BAD+∠ADC,
∠BAD+∠ADC=360°-135°-135°=90°, а учитывая, что ∠BAD=∠ADC (по тому
свойству равнобедренной трапеции), получаем ∠BAD=∠ADC=90°/2=45°, эти углы и есть меньшие в трапеции
Ответ: меньший угол трапеции = 45°.
Поделитесь решением
Присоединяйтесь к нам...
Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 20, а площадь равна 50√
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Какие из данных утверждений верны? Запишите их номера.
1) Площадь квадрата равна произведению его диагоналей.
2) Если две различные прямые на плоскости перпендикулярны третьей прямой, то эти две прямые параллельны.
3) Вокруг любого параллелограмма можно описать окружность.
В треугольнике ABC с тупым углом ACB проведены высоты AA1 и BB1. Докажите, что треугольники A1CB1 и ACB подобны.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Комментарии:
(2015-05-11 16:38:55) Администратор: Спасибо за найденную опечатку, исправлено!
(2015-05-11 14:37:16) : Есть ошибка. Не угол BAC, а угол BAD.
(2015-05-11 14:28:20) : Есть ошибка. Не угол BAC, а угол BAD.