Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Рассмотрим каждое утверждение.
1) "Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части". По
свойству равнобедренного треугольника, такая
биссектриса является медианой. А медиана, по
определению, делит сторону пополам. Следовательно, это утверждение верно.
2) "В любом прямоугольнике диагонали взаимно перпендикулярны", это утверждение неверно. Нет такого
свойства.
3) "Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу", это утверждение верно, по
определению.
Поделитесь решением
Присоединяйтесь к нам...
На отрезке AB выбрана точка C так, что AC=14 и BC=36. Построена окружность с центром A, проходящая через C. Найдите длину касательной, проведённой из точки B к этой окружности.
Диагональ прямоугольника образует угол 50° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
От столба к дому натянут провод длиной 10 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 8 м.
Найдите тангенс угла
AOB.
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 121°. Найдите угол C. Ответ дайте в градусах.
Комментарии:
(2017-04-30 22:07:28) Администратор: Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, отправте заявку на добавление задачи, и мы ее обязательно добавим.
(2017-04-27 13:09:48) : Число кустов сирени в парке относится к числу кустов жасмина как 17 к 33 сколько процентов кустов парке составляет кусты сирени